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ABSTRACT
Audio-visual video parsing is the task of categorizing a video
with weak labels at the segment level, and predicting them
as audible or visible events. Recent methods have leveraged
the attention mechanism to capture the semantic correlations
among the whole video across the audio-visual modalities.
However, these approaches may overlook the importance of
individual segments and their interrelations within a video,
typically relying on a single modality when learning features.
In this paper, we propose a novel interactive-enhanced cross-
modal perception method (CM-PIE), which can learn fine-
grained features by applying a segment-based attention mod-
ule. In addition, a cross-modal aggregation block is intro-
duced to jointly optimize the semantic representation of audio
and visual signals by enhancing inter-modal interactions. Ex-
perimental results show that our model offers improved pars-
ing performance on the Look, Listen, and Parse (LLP) dataset
compared to other methods.

Index Terms— Segment-Based Attention, Cross-Modal
Aggregation, Audio-Visual Video Parsing, Weakly-Supervised
Learning

1. INTRODUCTION

Humans perceive multisensory signals through sight, hear-
ing, touch and more, acquiring multi-modal information
when they explore the environment. Enabling machines to
fuse multi-modal information like humans is a valuable re-
search topic in scene perception and understanding [1, 2].
As two basic modalities, audio and visual play a vital role
in machine perception and understanding of scenes [3, 4].
Some researchers used audio and visual signals to capture
the comprehensive scene information, which can improve
model performance and generalization [5, 6]. However, the
above methods usually assume audio and visual signals are
temporally aligned, which, however, may not be the case, and
thereby leading to inaccuracies in parsing the video.

To solve this problem, Tian et al [7] proposed the audio-
visual video parsing (AVVP) task for a more fine-grained
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Fig. 1. Example of the AVVP task. Taking the audio and vi-
sual data as input, the task is to determine the event categories,
their temporal boundaries and the modality of the event. Note
that it is possible for audio events and visual events to be asyn-
chronous (e.g. acoustic guitar).

scene understanding. As shown in Fig. 1, AVVP aims to
locate the temporal boundaries of event categories within a
video with weak labels, and annotate them as audible, visible,
or a combination of both. This task involves two challenges:
One is to predict the event by extracting useful information
from every segment. The other is to aggregate the cross-
modality information to parse audio and visual events based
on weak labels.

In [7], a method combining hybrid attention networks
(HAN) and a multi-modal multiple instance learning (MMIL)
is used to aggregate multi-modal temporal contexts, together
with the identification and suppression of noisy labels for
each modality. Subsequently, Yu et al [8] proposed a method
to capture and integrate multimodal pyramid features in dif-
ferent temporal scales. Afterward, Chen et al [9] explored
common and specific characteristics between 2D and 3D vi-
sual features, and visual and audio features separately. While
the above methods have achieved promising improvements,
there are still some limitations: 1) The existing approaches
explore all features holistically from a whole video, but over-
look the importance of individual segments in a video and
the relationship among them. 2) The previous methods may
cause modality bias [10] due to their ineffective fusion of the



information from different modalities.
To address the above issues, we propose a novel interactive-

enhanced cross-modal perception method that leverages the
advantage of audio and visual modality. In detail, two stages
are involved. Firstly, we propose a segment-based atten-
tion (SA) module, which can effectively learn the importance
of each segment and capture the relationship between dif-
ferent segments in the whole video. Secondly, we design
a cross-modal aggregation (CMA) block, which can enrich
feature representation and enhance the ability of the model to
parse video. Experimental results on the benchmark dataset
show that our method achieves significant improvements as
compared with the baseline method, where the event-level
audio-visual event metric is improved from 48.0% to 51.3%.

The remainder of this paper is organized as follows. The
next section introduces the SA module and CMA block we
proposed for efficient video parsing. Section 3 presents the
experimental settings and the evaluation results. Conclusion
and future directions are given in Section 4.

2. PROPOSED METHOD

2.1. Problem Statement

The AVVP task aims to identify the event of every segment
into audio event, visual event and audio-visual event, together
with their classes. When we input an audio-visual video se-
quence with T seconds, we regard the video sequence as di-
vided into T segments with each segment lasting for one sec-
ond long, expressed as S = {At, Vt}Tt=1, where A and V
denote the audio and visual segment pairs in time t. We use
yat ∈ RC , yvt ∈ RC and yavt ∈ RC to represent the audio,
visual and audio-visual event labels at time t, where C is the
number of event categories. The audio-visual event occurs
when the audio event and visual event happen at the same
time, which means yavt = yat ∗ yvt . Noted that we only have
weak labels for training, but have detailed event labels with
temporal boundaries in both modalities for evaluation.

2.2. Segment-based Attention

As shown in Fig. 2, we obtain the audio and visual features
by using pre-trained audio and visual encoders, denoted as
{fa

t }Tt=1, {fv
t }Tt=1. These features are firstly aggregated

by the hybrid attention network (HAN) [7], which utilizes
self-attention and cross-modal attention to obtain the intra-
and cross-modality information. These multi-head attention
blocks δattn can be described as follows:

δattn(Q,K, V ) = Softmax(
QKT

√
d

)V (1)

where Q, K, V are query, key and value, with d being the
dimension of the vector Q. The process of obtaining features
from HAN can be denoted as:

f̂ha
t = fha

t + δattn(f
ha
t , Fha, Fha) + δattn(f

ha
t , Fhv, Fhv) (2)

f̂hv
t = fhv

t + δattn(f
hv
t , Fhv, Fhv) + δattn(f

hv
t , Fha, Fha) (3)

where fha
t and fhv

t are the feature vectors at a specific time t
extracted from audio and visual encoders. Fha and Fhv stand
for the feature set in the same video, which are defined as
Fha = {fha

1 , ..., fha
T } ∈ RT×d and Fhv = {fhv

1 , ..., fhv
T } ∈

RT×d. f̂ha
t and f̂hv

t are aggregated features obtained from
HAN, and d is the feature dimension which is set to 512 in
this paper.

The HAN module considers holistic feature informa-
tion but ignores the features from different segments [7]. To
address this limitation, we propose the segment-based atten-
tion (SA) module to obtain fine-grained feature information,
which is similar to channel attention mechanism [11], which
can not only selectively enhance or weaken different seg-
ments to highlight important feature information, but also
assist the model in capturing feature relationships among
different segments.

As shown in Fig. 3, in the SA module, firstly, the av-
erage feature representation is computed along the segment
dimension, then, these representations are input into a well-
defined neural network to generate the segment-based atten-
tion weight matrix W a

t and W v
t :

W a
t = φ(

T∑
s=1

(ϕa
t )) (4)

W v
t = φ(

T∑
s=1

(ϕv
t )) (5)

where ϕa
t and ϕv

t denote audio and visual features within a
video, whose dimensions are (b, s, d), representing batch size,
segment index, and dimension, respectively, and φ indicates
a neural network that includes several linear layers and acti-
vation functions (e.g. ReLU and Sigmoid). These attention
weights enable us to modulate the feature representations of
each segment according to their local importance. Afterward,
we multiply the input features with the attention weights to
obtain refined features f̃a

t and f̃a
t in terms of their importance,

f̃a
t = ϕa

t ∗W a
t (6)

f̃v
t = ϕv

t ∗W v
t (7)

Subsequently, these features are input into the HAN module
to do further aggregation to get f̂sa

t and f̂sv
t .

2.3. Cross-modal Aggregation

Two cross-modal aggregation (CMA) blocks are used to fa-
cilitate the learning of the correlations between audio and
visual features. As shown in formula (2) and (3), previous
method [7, 9] only used single modality as the input of vec-
tor K and V , which leads to sub-optimal cross-modal fusion
results. In contrast, we concatenate audio and visual features,
and then, the single-modality features are brought closer to
the fused features. This can mitigate the impact of modality
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Fig. 2. The pipeline of our proposed interactive-enhanced cross-modal perception model (CM-PIE). It uses pre-trained encoders
to extract audio and visual features. Firstly, we used two attention-based modules to learn fine-grained information. Then two
cross-modal aggregation blocks are used to improve feature representation. Finally, multi-modal fusion is exploited and using
MMIL Pooling to get the video-level event prediction.

bias and enhance the effectiveness of cross-modal informa-
tion fusion:

ĝhat = δattn(f̂
ha
t , F̂ha ⊕ F̂hv, F̂ha ⊕ F̂hv) (8)

ĝhvt = δattn(f̂
hv
t , F̂ha ⊕ F̂hv, F̂ha ⊕ F̂hv) (9)

ĝsat = δattn(f̂
sa
t , F̂ sa ⊕ F̂ sv, F̂ sa ⊕ F̂ sv) (10)

ĝsvt = δattn(f̂
sv
t , F̂ sa ⊕ F̂ sv, F̂ sa ⊕ F̂ sv) (11)

where F̂ha and F̂hv are the sets of aggregated audio and vi-
sual feature obtained from HAN as defined in the previous
section, F̂ sa and F̂ sv are the sets of the audio and visual fea-
tures obtained from SA, ĝhat and ĝhvt are the features obtained
after applying the CMA block, and ⊕ means concatenating
operation. In the same way, ĝsat , ĝsvt are the aggregation fea-
tures derived from the SA module. Subsequently, we perform
feature fusion operations as follows:

g̃at = Mean( ĝhat , ĝsat ) (12)

g̃vt = Mean( ĝhvt , ĝsvt ) (13)

where Mean denotes taking the average of the two vectors
element-wise. With the feature g̃at and g̃at , we can obtain
the segment-wise event prediction, which can be turned into
video-level predictions by a pooling method, such as MMIL
Pooling [7] based on a shared fully-connected layer and an
activation function.

3. EXPERIMENTAL RESULTS

3.1. Experiment Setup

Dataset. The LLP dataset [7] is used to evaluate our method.
This dataset has 11849 videos with 25 categories taken from
YouTube, containing various scenes and species. The dataset
has 10000 videos with weak labels as the training set, 1200
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Fig. 3. Details of segment-based attention (SA) module. This
module can learn the importance of each segment by calcu-
lating the segment-wise attention weights.

videos and 649 videos as the testing set and the validation set
with fully annotated labels. Each video has 10 segments and
each segment lasts 1 second.
Implementation Details. We use pre-trained VGGish [13] to
get 128-D audio features, and use 2D and 3D ResNet [14, 15]
to extract 512-D visual features. The concatenation of 2D and
3D visual features is subsequently fed through a multi-layer
perceptron (MLP) to generate segment-wise representations.
Evaluation Metrics. Following [7], we evaluate the perfor-
mance of the proposed methods using F-scores, calculated
at both segment-level and event-level. For the segment-level
performance, we compute the F-score for each segment. The
F-scores for the Audio, Visual and AV columns in Table 1
were calculated by comparing the predictions with the ground
truth annotations for audio, visual and audio-visual sequence,
and averaged for all the video sequences. With Ty@AV,
we evaluate the overall performance by averaging the results
from Audio, Visual, and AV columns. With Ev@AV, we eval-
uate the performance of the models for event classification
by averaging of the F-scores calculated for each event, i.e.
comparing the prediction results for each event and its ground
truth annotation along the segments in the video sequences.
For the event-level performance, we first concatenate the



Table 1. Comparison with the state-of-the-art methods on the LLP dataset in terms of F-scores. The event-level F-scores are
calculated using a threshold of mIoU = 0.5.

Method Segment-level Event-level
Audio Visual AV Ty@AV Ev@AV Audio Visual AV Ty@AV Ev@AV

AVE [5] 47.2 37.1 35.4 39.9 41.6 40.4 34.7 31.6 35.5 36.5
AVSDN [12] 47.8 52.0 37.1 45.7 50.8 34.1 46.3 26.5 35.6 37.7

HAN [7] 60.1 52.9 48.9 54.0 55.4 51.3 48.9 43.0 47.7 48.0
MM-Pyramid [8] 60.9 54.4 51.8 55.1 57.6 52.7 50.0 44.4 49.9 50.5
CM-CS+HAN [9] 57.1 57.6 52.9 55.9 53.9 49.4 54.2 46.7 50.1 47.8
CM-PIE (Ours) 61.7 55.2 50.1 55.7 56.8 53.7 51.3 43.6 49.5 51.3

positive segments in a sequential order, then calculate the
F-score for each event, finally take the average F-score for all
the events. The event-level evaluations also take into account
the accuracy of the onset and offset time of event occurrence.
3.2. Comparison with State-of-the-art Method

We compare our method with several popular baselines, in-
cluding HAN [7], MM-Pyramid [8] and CM-CS [9]. We also
compare our method to some modified audio-visual event lo-
calization methods, including AVE [5] and AVSDN [12]. As
shown in Table 1 , the proposed method shows improved per-
formance due to adding the SA module and CMA block. The
outcomes demonstrate a significant performance improve-
ment of our model over the baseline method HAN across all
evaluation metrics. Compared with HAN, our model is im-
proved in both single and multi-modal metrics. For example,
it achieves up to a 1.6% improvement in Audio & Segment-
level and 2.3% enhancement in Visual & Segment-level.
What’s more, our model achieves a 3.3% improvement in the
Ev@AV & Event-level metric. This confirms that accurate
event localization at different segments can be achieved by
learning useful information from important segments and the
fusion of features of different modalities, thereby improving
video parsing performance. Our method achieves state-of-
the-art results on some indicators, such as Audio & Segment-
level and Ev@AV & Event-level, and the model also shows
promising results on other performance indicators.
3.3. Ablation Study
We investigate the influence of each part within the proposed
approach and the results are shown in Table 2. We notice that
both the SA module and the CMA block can improve the ex-
perimental results in several metrics. By learning from crucial
segments, we have achieved notable performance enhance-
ments in both visual and audio-visual evaluations, especially
for audio events. This module can address the potential lim-
itation described earlier of relying solely on aggregated fea-
tures from the HAN and obtain a more precise understanding
of the audio content and temporal information. Furthermore,
the usage of the CMA block significantly improves the results
in terms of Ty@AV and Ev@AV evaluations. Given that the
Ev@AV evaluation considers the F-score for all audio and vi-
sual events, the enhancement in Ev@AV further indicates the

Table 2. Ablation study on the LLP dataset. Seg Attention
denotes adding the SA module. w/o. V and w/o. A means us-
ing only the CMA block for audio features or visual features.

Segment-level

Methods Audio Visual AV Ty@AV Ev@AV

HAN [7] 60.1 52.9 48.9 54.0 55.4
+Seg Attention 60.7 55.5 48.6 54.9 56.1

w/o. V 60.4 55.3 51.2 55.6 56.1
w/o. A 61.5 54.8 50.0 55.4 57.0

CM-PIE (Ours) 61.7 55.2 50.1 55.7 56.8

Event-level

HAN [7] 51.3 48.9 43.0 47.7 48.0
+Seg Attention 53.2 49.8 42.1 48.3 50.5

w/o. V 52.2 50.0 43.8 48.6 49.3
w/o. A 53.0 51.1 43.5 49.2 50.9

CM-PIE (Ours) 53.7 51.3 43.6 49.5 51.3

substantial improvement introduced by the proposed method
in audio-visual parsing.

4. CONCLUSION

In this paper, we have presented a novel weakly-supervised
audio-visual video parsing framework. Two modules are in-
troduced to leverage the segment relationships and seman-
tics across the modalities. The segment-based attention mod-
ule extracts local features from segments, which can learn
more fine-grained semantics in a video. The cross-modal ag-
gregation block effectively reduces modality bias, facilitating
the effective fusion of the cross-modal information. Our ap-
proach has achieved promising results on the LLP dataset. In
future work, we will further study the relationship between
different segments across the video sequence.
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